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The compensation effect related to isoparametric correlations is analysed within the 
formal theory, and the statistical and physico-chemical aspects of these correlations are 
considered. 

The greatest diff iculty involved in the kinetic analysis of the reactions of condensed 
substances is the nonuniqueness of the solution of the problem of kinetic parameter 
reconstruction from experimental data. This usually concerns the form of the com- 
pensation effect (CE): 

IogA = B + eE (1) 

In nonisothermal kinetics this dif f iculty is due to Eq. (2) 

dt A exp -- f(~) 12) 

with standard notations [1]. The above nonuniqueness of the solution detracts from 
the value of the kinetic parameters, imparting to them a merely empirical character. 
Equations (1) and (2) have therefore been criticized and rejected in many publications, 
most uncomprisingly in [2, 3]. However, the mere rejection of Eqs (1) and (2) is not a 
solution in itself [4, 5]. In this survey we have endeavoured to throw light on the 
present-day interpretation of the problem and the application of Eqs (1) and (2) in 
their interrelation, and to devise a certain approach to the elimination of ambiguity 
in the kinetic parameters. Earlier contributions concerning the CE in different fields 
of physical chemistry have been thoroughly surveyed in [6-9] .  

To be specific, the problem of CE interpretation for solid-state reactions can hardly 
be solved unless we take into consideration certain advances made in the analysis of 
the isokinetic reaction (I R) 

H ~ = g  + E)~S ~ 

* To whom correspondence should be addressed. 

(3) 

John Wiley & Sons, Limited, Chichester 
Akademiai Kiad6, Budapest 



238 LESNI KOVICH, LEVCH I K: ISOPARAMETR IC KINETIC RE LATIONS 

for liquid-phase processes similar to (1) Following the traditional situation in chemical 
kinetics, the level of theoretical CE interpretation is higher in the kinetics of homo- 
geneous reactions than in the kinetics of heterogeneous solid-phase processes. Their 
certain specificity [10] does not allow one to extend the advances made in the kinetics 
of homogeneous reactions to the field of heterogeneous processes [11]. However, for 
want of other grounds, the elementary stages of a chemical event in this field are still 
being interpreted in terms of the homogeneous transformation theory [12], although 
this approach is rather questionable. Such a situation in the kinetics has predeter- 
mined the pattern of our survey, in which the theory is mainly based on the advances 
made in the isothermal kinetics of liquid-phase reactions. Nevertheless, the leading 
problem of the survey is the CE analysis of the kinetics of solid-phase reactions, 
basically under nonisothermal conditions. Thissubject is dwelt upon in the second 
part of the survey, which additionally considers the possibility of a rational use of 
some approaches from the homogeneous reaction theory. The development of such 
approaches and their application to heterogeneous process are the concern of 
refs [13-15] .  

The expression "isoparametric relations" is based on the terminology suggested by 
Palm [16]. Their essence is analysed in what follows. An isokinetic relation of the 
type (1) and (3) is a particular but most important case of isoparametric relations. 
It should be noted that the term 'isokinetic' may have another meaning [17]. 

1. F o r m a l  aspect 

Isoparametric relations appear as natural as they can be in the formal interaction 
theory cited in monograph [16]. Consider in short the quantitative aspect of this the- 
ory. Its mathematical aspects correspond to experimental-statistical methods [18] of 
planning experiments in particular. The form of the response function f (continuous 
and monotonic), which expresses the complex dependence of the measured system 
property on many unknown elementary parameters of x i composite parts of the 
system and/or on the ambient conditions, is uncertain; in a rather narrow interval 
of arguments it is approximated by the polylinear portion of the series expansion 

f ( X l , X 2 ,  . , x i , . .  , X n ) = f O ~ x  0 x 0 . . . .  1 '  2 . . . . .  xO . . . . .  xO) + 

n n n n (4) 

+ Za,x,+, Z Ha,x; 
i=1 i=1 j = l  i=1 

where the x~ are variables depending only on the arguments x i  whose values are 
controlled by the researcher, their change involving variations of f (the way in which 
x j  is introduced is the main specificity of the approximation under consideration); 
the x 0 are the standard argument values at which f = f0 ;  the a i are the scale factors 
depending on the x j  scale standardization conditions (an arbitrary change of the x} 
scale is possible); and e is a constant for the type of interaction of the x} parameters. 
Polylinear functions (4) are linear with respect to any of the x j  arguments. Their form 
is preserved on substitution of an arbitrary set of arguments x j  by a new argument 
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whose form corresponds to Eq. (4) for m terms (without f0),  which means that each 
x;  corresponds to some set of true arguments xi. These functions may be represented 

as the product 

t~ 

f = f O . - ( x - 1  +(~-1  ] ] ( l + ( x a i x  ~) (5) 
i= 1 

If the constants in (4) may be expressed as (x exponents, then the function is homo- 
geneous (it is nonhomogeneous with mutually independent constants). The homo- 
geneity of the polylinear function may be judged either from the results of the regres- 
sion analysis of the experimental data, permitting determination of the coefficients 
in the f expansion, or from the findings for the successive correlation series [19] in 

�9 the case of the correlation of factors responsible for unsteady solution and displaced 
estimates of the coefficients. The homogeneous and nonhomogeneous polylinear 
functions are mathematically equivalent if f is only expressed as the dependence on 
two x ;  arguments. For a greater number of arguments the nonhomogeneous polylinear 
function is of the form 

f =  fO Jr ~ a i X  i Jr ~/~__,'aijxix j -t- ~ _ . : ~ ' ~  aij lXiXjX , + . . .  (6) 
i i< j  i < j < l  

A formal quantitative interaction theory is constructed on the basis of the poly- 
linear expansion and its properties. A unique homogeneous polylinear function 
(certain e) is consistent with the intensity for a certain formal homogeneous inter- 
action. With the additive contribution of different formal interactions and one variable 
factor with the number w, Eq. (4) reduces to 

f = fO w + ~OwX w (7) 

whence the numerical value may be obtained for Xw, i.e. a parameter characterizing 
numerically the contribution of the factor w to the prescribed type of interaction. 
fO and ~0w are prestandardized. Numerical characteristics such as these may be ob- 
tained for each variable factor. 

Equation (5) yields the isoparametric property: the product in (5) vanishes if any 

of the x j  arguments becomes x j -  1 , called an isoparametric point for the 
o~a I 

parameter x/'. Traversing of this point (with changing x;) changes the product sign in 
(5), i.e. it results in change in the orientation of the effect of any remaining argument 
to f. The isoparametric value of f is fO _ e - l .  For the nonhomogeneous polylinear 
function more widely used in practice, only pair isoparametricity may occur, which is 
the f independence of a single argument at an isoparametric value of some other one. 
If such a function is three-parametric, then the pair isoparametricity is represented by 
an isoparametric line; in the case of a four-parametric function, it is a surface; etc. 

It is evident that the isoparametricity observed experimentally is a reality inde- 
pendent of the manner in which the phenomenon is interpreted, while the factors 
traversing zero values with changing signs can neither be considered invariant charac- 
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teristics of the process nor have a certain physical meaning. Thus, one may speak of 
an isoparametricity paradox, as such factors include, in particular, the activation 
energy E, Hammett constants p, etc. Indeed, if the energy e or free energy G are 
functions as f, then polylinear functions result in linear energies or free energies (LFE). 

It follows from (7) that 

e l , i  = a -F bem, i (8) 

(i is the number of the variable factor; / and m are two different combinations of all 
remaining factors affecting e; b = ~ l / ~ m ,  ~ depending, in particular, on the e charac- 
terizing the isoparametric point; a = c / - b e ~  with a similar expression for G or 
AG. A LFE (linear free energy), in turn, yields Br~nsted, Hammett and other equa- 
tions. Moreover, the Arrhenius and Van't Hoff equations are also regarded as the 
simplest example of LFE validity: 

E 1 
log k = log A 2.3 R T (9) 

1 
where ~ is the x w parameter (of (7)); E is independent of T. The same may be said 

about the relation 

G = H - TS (10) 

with H (enthalpy) and S (entropy) independent of T. 
In such an (extrathermodynamic) approach the parameters E, H, S and G are not 

identified with thermodynamic functions: isokinetic or isoequilibrium relations 
similar in their meaning to CE (1) need not therefore be discussed thermodynamically. 
They follow immediately from the polylinear functions if at least one more x argu- 
ment is varied along with temperature: 

A G = A G  0 - e - 1  + ~ - l ( l + e a l X ) ( l + ~ a 2 T  ) =  

= A G  O + a l x +  (1 + ~ a l x ) a 2 T ,  

i.e. 

and 

- ( 1  + e a l x ) a 2  = ~ S ;  AGO + a l x  = ~d-I 

1 
~ - / -  --~S+6GO-e-I, 

0~a 2 

which may be written in the form of an isokinetic relation ~ = g  + | here 
1 

g = AG O _ (~- 1 ; (~ -- (AG O shou ld  no t  be confused w i th  the standard varia- 
(xa 2 

tion of the isobaric-isothermal potential). On the whole, the isokinetic relation is a 
mathematical requisite for the validity of all other LFE laws [16]. Isoparametricity is 
observed when cross term in the f expansion are significant, i.e. when f is markedly 
affected by the perturbations of the factors which the x i arguments correspond to. 
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If the process is governed by a multiparametric nonhomogeneous polylinear func- 
tion, then the location of isoparametric points for two-parametric relations will 
depend on the level at which the values of the remaining parameters have been fixed. 
This accounts for a variable or random character of the values of isokinetic tempera- 
ture O for reactions with similar mechanisms, for which one might expect constant 
values of this magnitude. Therefore, O can hardly be related to the nature of the 

process, this also being true of the values of the type E, p, etc. In particular, real 
isoparametricity including transformation of the activity series was observed in the 
systems governed by the Br~nsted equation [20]; Br~nsted coefficients cannot there- 
fore describe a simple and specific physical meaning (cf. [21]). As invariants, one may 
consider the coefficients of the cross terms of the nonhomogeneous polylinear func- 
tion, the validity of which in a wide range of arguments, rather than the constancy 
of the sensitivity coefficients of the type E, p, etc. in partial linear relations, must be 
regarded as a criterion of a constant process mechanism. It has been emphasized that 
no theoretical models have as yet been developed for the above invariants, this being 
an urgent problem [16]. 

The grounds for the above approach (that can be applied not only in the case of 
carbon compounds and their simple reactions [22, 23]), as well as the reliability of the 
subsequent conclusions, have been comprehensively exemplified in [16], including 
real traversals of isoparametric point. Such traversals are also dealt with in recent 
contributions [24-28] .  The available data on the interdependence of the reactivity (p) 
and isokinetic temperature [29 -31 ]  do not contradict the above general conclusion on 
variable O, as in particular cases the effects of some ignored factors on the reactivity 
may be insignificant, or they were kept at the same level [32]. Critical analyses of 
one- and multiparametric correlations are made in [33-36] .  

Thus, 'isoparametricity' may be applied as a general term to describe the property 
of the polylinear function in assuming one and the same (isoparametric) value if any 
of the arguments reaches a certain (isoparametric) point. The change of the arguments 
at that point has no impact on the function value. 

The isoparametricity of the simplest function 

z = y + q x  (11) 

mathematically implies the linear interdependence of y and q 

y =  rT-eq (12) 

where r and e are constant under definite conditions. Relation (12) is the condition of 
the formation of a pencil with the centre ( x , z ) =  (e, r) by straight lines (11) with 
variation of the parameter q; this can easily be verified by elementary analytical 
geometry procedures. 

Equation (11) may also serve as an isoparametric relation, provided there exists 
the real dependence 

Z = zT-xX (13) 
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with constants z and x. In the same way, Eq. (12) may function as (11), provided 
that there exists the isoparametric dependence 

r = R+Qq  (14) 

Such a mathematically trivial approach, along with an inductive method, may yield 
from the fact of isoparametricity a definite hierarchy of isoparametric relations, 
initiated in our case by Eq. (13). The information available in physical organic 
chemistry (partly dwelt upon above)'shows that isoparametricity is by no means a 
"nuance of a mathematical game" [16, 37]. It has been shown recently that the above 
hierarchic structure is also possible [13]. 

As for a formal CE analysis, intriguing contributions [38-40 ]  have been made 
regarding the Arrhenius equation as a correlation from the position of projective 
geometry. This permitted the revelation of the intercorrelated values and the determi- 
nation of the number of possible correlations, many of which had been little studied, 
if at all. These works also provide arguments for a number of well-known relationships, 
for example, between the isokinetic temperature and the CE, as well as the interde- 
pendence of the CE and the Zavadski-Bretschneider law, well documented in topo- 
chemistry (the interdependence is not always unambiguous [41], but this does not 
diminish its significance for the problem, just as in the case of the IR with the 
Hammett equations). 

For orientation among the possible relationships between interdependent magni- 
tudes (as, for example, in the Arrhenius equation), it seems reasonable to use the 
mathematical principle of duality. Many of these relationships are rather obvious, 
provided that the reference equations of type (9), including the product of two 
variables, are represented as a hyperbolic paraboloid [13, 42]. Thus, the mathematical 
aspect of these relationships is trivial and the conclusion [38 -41 ,43 ]  that the mathe- 
matical basis of the CE lies in the equation of type (9) itself is beyond doubt. It is 
important that long-range extrapolation is performed when calculating A (or Iog A), 
which enhances the correlation of A and E in a limited range of experimental tem- 
peratures and rate constants [44]. However, when the CE is not a computational 
artifact, no mathematical analysis alone can indicate the reason for the changing of 
empirical A and E, as these reasons are quite obviously purely physico-chemical, 
though they may not be associated at all with the changing properties of the potential 
reaction surface. Besides, it is necessary to understand physico-chemically why these 
changes are regular and conform to the CE. 

2. Statistical aspect 

The development of rigorous quantitative statistical criteria for the CE validity is 
the most important problem in CE analysis. The development has three aspects. The 
first is represented by contributions [45-47 ]  identifying the reality of the CE with 
the functional validity of Eq. (1) and using dispersion analysis as the main statistical 
approach. The functionality of Eq. (1) may be masked by experimental errors, and 
the Arrhenius lines will therefore intersect not at one point, but in some domain 
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A~ �9 A In k (x = 1/7"), whose dimensions are determined by the accuracy measure- 
ments. As the most probable coordinates of the above point are prescribed (1) as the 
regression equation 

~nA = I n k  e + eE (15) 

the required functionality condition (1) wil l  be satisfied provided that the deviation of 
In kei (i.e. In k e for the i-th experimental series at a point x = e) from the mean value 
of In k e (i.e. from In ke) does not exceed the errors of In kei estimation, which is 
solved with the use of the Fischer criterion. Otherwise, the CE is apparent even in the 
case of an approximate linear dependence in In A vs. E coordinates, a weaker correla- 

tion corresponding to it. Here, the regression coefficient e is also consistent with the 

minimum deviation of In kei from In k. The sufficient conditions for CE reality, 
requiring that preexponential factors and activation energies be essentially different in 
different series, are determined in the same way. If only the required condition is 
fulfi l led, then the CE may be due to experimental errors: the minimum dispersion of 
In k i will correspond to the point x, while the apparent CE wil l be written as 

InA = Ink  + x E  (16) 

(In k is the mean over all the experiments). In this case, for all i Arrhenius lines a mean 
value of A or E may be taken. The CE decrease due to experimental errors may be 
attained by extending the temperature range, increasing the number of measurements 
close to the edge of this range and the mean experimental temperature. It must be 
remembered that the validity of Eq. (16) is not strict evidence of the apparent CE, as 
the experiments might have been performed in a temperature range where x = e. The 
validity of this equality can only be verified experimentally. When only the condition 
of essential difference is fulf i l led, the CE may also be apparent (despite the correlation 
coefficient �9 ( InA, E) being close to unity), because of the narrow range of k i and x i 

measurements for a series of reactions or catalysts. The appropriate CE wil l be 

~n A ~- IF k + xE. Along with the essential differences in E, the narrow range results in 
the maximum approach of the Arrhenius lines just within this range. The verification 
of the proposed criteria has shown [46] that they may help to distinguish the func- 
tional CE even at low (0.42) correlation coefficient �9 ( InA, E) obtained at e = 0, i.e. 
when Eq. (1) degenerates to become IogA = B and A is independent of E. In other 
cases of the functional CE under study, the r ranged between 0.82 and 0.999. The 
regression analysis in the log A vs. E coordinates is only regarded as semiquantitative. 
The method under consideration is comparatively simple, yet it yields a displaced 
estimate for e. Therefore, in [47] its complicated modification is suggested, comprising 
iterative procedures and relying upon the application of the X 2 criterion. This version 
may be used in most general cases when the number of points, the accuracy of their 
estimation and the location along the T -  1 axis are different in different experimental 
series. 

The second aspect is based on the linear regression analysis and is the concern of 
the studies surveyed in [7]. Comparison of Eqs (3) and (10) shows that (3) acts as an 
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isoparametricity condition with respect to (10), while g has the meaning of the Gibbs 
energy (AG), and E) is the absolute temperature. It follows from (3) and (10) that the 
linear relationship between any two magnitudes of the set AG~, AH~ and T~S "~ 
means a linear dependence of the third one on each of the other two magnitudes. 
In this sense, the three relations obtained are equivalent. This does not mean, however, 
that they are statistically equivalent. Relation (3) may only be due to the errors in the 
~d-/~ and z~S ~ determination because they are correlated. For k 1 and k 2 estimated 
at T 1 and T 2, the isokinetic relation gives the expression 

Iogk 2 = a  + b  Iogk 1 (17) 

1 - b  
and O = T1T 2 T1 _bT2.  Following (17), b and hence | may be estimated in two 

independent experiments, which eliminates correlated errors. The above and a number 
of other simple methods of O determination are considered in [16] and are not dwelt 
upon here. 

As the variables Iogk and 1/T are also determined individually, the Arrhenius de- 
pendences may be used to find | and to estimate its statistical value. It is important 
that the error in the log k measurement is essentially less than the errors of the IogA 
and E indirect measurements. The latter errors have magnitudes of the same order, 
but the confidence interval in the appropriate coordinates is an ellipse with large 
eccentricity and the major axis is directed close to the harmonic mean temperature. 
This proximity must arouse suspicion, for in this case IR may only be due to the 
errors in the A and E measurements. Thus, the algebraically equivalent expressions 
turn out to be statistically nonequivalent. To be specific, with no correlation in the 
coordinates log k 1 vs. log k2, a fine correlation in the coordinates log A vs. E may be 
obtained. In [7] some particular examples are analysed and it is shown that the de- 
pendence of the type IogA vs. E cannot be used in the general case to find the iso- 
kinetic temperature. Its crude estimation in the first stage of analysis may be per- 
formed in accordance with (17), but the plot E vs. Iog k is preferable for narrow 
temperature ranges (~ 10~ 

In the course of regression analysis as in (17), the question arises as to which of the 
two regression lines (17) should be taken for calculations, log k 1 to log k2, or log k 2 
to log k 1. Minimization of the deviations yields for the resulting line (17) the slope 

2S1S2r12 
b = tan ~, with tan 2~ Sl 2 _ $2 , where S 1 and S 2 are the standard deviations of 

Iogk 1 and Iogk2; r12=r( Iogk1; Iogk2) ,  the correlation coefficient. The most 
exact and correct approach, however, implies a statistically correct solution to 
the problem of intersection of the series of I Arrhenius lines at the point x 0, Yo 
( x - - -T -1 ;y - - - I ogk )  in the second stage. The details of this analysis are given in 
[48, 49]. The problem was solved by minimizing the squared deviations of each i-th 
regression line ordinate from the assumed intersection point. The obtained set of 
/ +  2 nonlinear equations had an exact solution only when the experimental values 
for all the regression lines were obtained at the same (but not necessarily equidistant) 
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values of x. In a more general case, the problem is solved numerically by finding the 
residual sum of the squares at arbitrary abscissa values and successive estimation of the 
minimum of this sum. 

In what follows we shall cite in short the algorithm proposed in [7, 48] for the case 
when the measurements in all the runs are performed at equal temperatures�9 This 
algorithm may be recommended for solving particular problems dealing with the CE. 

For calculations, some auxiliary values should be determined, such as: 

l j ~ ,  1 i ~ u j  2 X = (Xj -- X) 2 --_ -~  ; 

Y = m Z (Yi - y) 2 = I ~i ( ~ l~ k i j  ) - -m-i ( Z log k i j  ) 2 ; 

1 2 z = X<~,,, .-  ;~-- XI,og k,jl~-~/(Z,og k,;) ; 
i j  i j  i ] 

P = m Z P i  = ,~.~uj log kij; 
i q 

O = m  . 2 = m  i " 

i J 

m l  q i j  

where 

�9 m j 

They may help to obtain the deviation of the value, an inverse of the isokinetic 
temperature, from the mean measured inverse temperature 

2, T 7, o - - ~ - x Y  o -  -xy )  ~ - -  + X U  2 
U 0 = 0 - -1  - - - - _ _  

j m U 

the inclinations of the Arrhenius lines 

b i = 

,,, § u o ( ~ o - ~ Z , o , k , ; I  m j 

x+ ~ 
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the intersection point abscissa corresponding to the isokinetic temperature, 

X 0 = 0--1 =Uo +X ,  

and its ordinate 

1 ( X l o g k i j + u o P I  
Y~ ij x J  

The significance of the hypothesis of the single intersection point is estimated by 
comparing the residual sum of the squares (So0) for normal regression lines with the 
similar sum (S O ) on the assumption that all the lines intersect at one point: 

Q 
S o o = Z - - Y -  X 

with the number of degrees of freedom 

f = (m - 2)/; 

p2 a+~+xY 
So = Z - -  

r V( p2 )2 + O --  - -~  -- X Y  + X U  2 

2X 

with f = (m -- 1 ) / -  2 degrees of freedom. S O characterizes the standard deviation at 
the point 1/O. If the difference between So0 and S O is significant (So0 <So) ,  for 
intersection strictly in a point (Soo = So), then the hypothesis of the single intersec- 
t ion point is rejected. Finally, the S u function characterizing the confidence interval 
for 1/O is calculated and buil t  as 

p2 
Q - uU + u2 ( y  + - ~  X )  

Su = Z  
X + u  2 

with f = (m - 1 ) / -  1 degrees of freedom. Here, i is the line index, j is the line point 

index, and m is the number of line points. TheS u funct ion has asymptote S= parallel 
to the x axis, with a minimum at the point u = uo (Su = So) and a maximum wi th in 
the domain of the experimental points. If x = T -1  is taken as the abscissa, then this 
function has its minimum at the point standing for the most probable value of 0 -1  . 
This is also true of the standard deviations s u and s O corresponding to the residual 
sum of the squares. The graphic representation of the analysis results is completed 

with the indication of the value of Soo (or so0) and the log k experimental measure- 
ment error. Such a comparison of the difference in s O and s00 values with an ex- 
perimental error, and determination of the confidence interval for O, is most visual. 
The program for computer-aided calculation using the suggested method is reported 
in [50]. 
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The situation is possible when the hypothesis of the single point of intersection 
cannot be rejected even at a poor minimum. This is interpreted as the presence of 
an IR for which O cannot be determined with the required degree of accuracy from 
the above runs. On the whole, in accordance with [7, 51], the isokinetic temperature 
has no simple physical meaning and its measurement, usually in a wide confidence 
interval, is not the main goal in the isokinetic problem. The latter implies verification 
of I R validity for the reaction series. Depending on the value of O, the reaction series 
are subdivided into isoentropic (O = ~), isoenthalpic ((~ = 0), anticompensation 
(O < 0) and compensation (O > 0) types. The correct assignment to a reaction series, 
asided by the comparison of the S 0, So0 and Soo type values, promotes the elucidation 
of the process mechanism, which is often regarded as constant within a series for 
which an IR is fulfilled. Exner gives particular examples of IR analysis by the method 
he suggested [7, 48, 49]. 

The third aspect of the statistical CE analysis allows investigation of both the linear 
and nonlinear relations [52-54] .  Following [52, 54], the real relationship between the 
activation parameters is always concealed by the existing and dominating statistical CE 
generated by random experimental errors exceeding the changes in these parameters, 
which has been pointed out in earlier works but has not been proved statistically. The 
correlation coefficient (p) for the estimates ~ and ~S in the absence of extrathermo- 
dynamic effects is 

T 
P = / = lim r l/nZ ( )2 n ~ o o  

(summation with respect to all n experimental values l / T ,  r being the correlation 
estimator), i.e. it depends only on the choice of the test temperature range, is close 
to unity when the range is narrow, and the experimental errors exceed the ~ and 
~S changes. For real entropy-enthalpy relations the value of r is lower, since its 
proximity to unity points either to no real effect or to its masking by a much stronger 
statistical effect. The elliptic confidence interval in the ~ vs. ~S plane is determined 
by the following ratio of the ellipse axes a and b: 

- - ~  1 -  1 
7 

(typical values of a/b ~ 104). If the ~ and ~S changes are small compared with the 
errors, then they are superimposed by this ellipse ( ( )  stands for a mean value). The 
inclination of the major ellipse axis is ( l / T )  -1 = Thm, i.e. the z3J-~ and ~ e s t i m a t e s  
are distributed along the line with slope Thm, which is exactly an erroneous estimate 
of the isokinetic temperature when ~d-/~ and ~ ' ~  are found from the linearized 
Arrhenius equation by the least-squared method. Correspondingly, the statistical CE 
has the form ~d-/# = AG~.h;,n + mhmZ~S-~ and is only useful for verifying the zero- 

J. Thermal Anal. 30, 1985 



248 LESNIKOVICH, LEVCHIK. ISOPARAMETRIC KINETIC RELATIONS 

hypothesis H 0 : | = Thin. The significant deviation of E) from Thm may be interpreted 
as manifestation of real compensation. The estimate (1 - e )  100% of the confidence 
interval for ~) may be obtained from the formula 

m _  , 

where 

,-~ = ,~( /kH - <&H>)(/kS - <AS>) V(~) = , ~ ( A H  - ,'kGe) - | 2 

_.~'(/kS - < AS)) 2 ' ( m - 2 )  ~ '  (/kS - < z&S)) 2 

and m is the number of pairs of (AH,/kS) data. The zero-hypothesis cannot be 
rejected if Thm is within the above internal. The analysis of the reported data per- 
formed in such a manner in [53] has shown that the number of real CE-type relations 
is much lower than is reported. 

The uncorrelated parameters of the Arrhenius equation are obtained [52, 53] 
from its transformation 

I n k =  ( InA RThm)- - - -R ( T  - 7 (18) 

It is easily seen that such a transformation is a mere use of new independent variables 
of the scaling type [55], which in general may be different [56, 57]. 

The authors of [53] deal with some shortcomings of the above and other methods 
suggested by Exner [7], associated with the use of the linear regression alone, restric- 
tions in the choice of log k at two-three temperatures and the required a priori knowl- 
edge of the errors in the k value, as well as the low accuracy of the | determination. 
It is also shown that the neglect of the restrictions of ordinary regression analysis in 
analysing /kH vs. /kS yields worse rather than better parameter estimates. When trans- 
formation (18) is used, In k 0 - E/RThm, being the measure of/kG~hm, and E/R, are 

noncorrelated (statistically independent): 

---- O, 

as the estimates for /kG~, are obtained at T = Thm. Thus, of the possible ~F/, ~ '  
' / 7  m 

and AG pairs of values related by Eq. (10), AGTh m and only be used to ~-~ may seek 

extrathermodynamic relations. Denoting 1 / ( 1 -  T/E)) in terms of 3' gives one of 
them, which is necessary for further analysis, in the form Z~#-/= ~/AG + (1 - 7) AGe. 
The theory and algorithm of the modified regression of two variables determined with 
some error, which may be applied for linear and nonlinear relations, are given. In the 

of linear relations for / k ~ j  and ~z3J~ # (linearity is verified graphically), formulae case 
are obtained to estimate isoparametric values from j data series with ~G ~, ~-/j.~ and 
residual sums of squares S 2 obtained a priori for each of the series from the regression 

1 
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Ink  over (1 /T -  ( l / T ) ) :  

Z~Hf = - R~2,i - RThm; 

n n <1>] 
Z Inkij  Z Inki j  -- --~ 

"~ ' l , j -  i=1 ~2,j = i=1 
n ' n 

i_~  1 1 1 2 b;-(7)) 
n 

( I n k i j _ ~ l , j _ ~  1 1 2 

! n - 2  

These formulae are of the form: 

Thm . AGe - 
e = - - -  T, 

a 

where 

SHH -- XSHG 
2SHG 

/(SHH -- SHG )2 • ~.~  +~; 

Z ~ - ~ Z  ~Gj 

! Zs? 

X= 

s.,, = Z '~? q Z !  q 

J. Thermml Anml. 30, 1985 



250 LESNIKOVICH, LEVCHIK: ISOPARAMETRIC KINETIC RELATIONS 

s.G = Z q 
~, AHj ~ AGj 

1 zq 
Upper and lower boundary estimates are obtained for | and/kG'~ to find the (1 - e) 
100% confidence interval: 

a~ = S2 S2 , 7"~ = l,/-~ tan ~ ;  

Z !  sT 
where 

~ : ~ + l s i n - l J 2 t 2 ,  m 1, ,'! ;k(SHHSGG--S2G ) 

~ = tan-1 (~-X); SGG=Z AG2 
s/ 

7 12 

1 zq 
For 7 the zero-hypo~es~ will be H0: ? = 1: the deviation of this hypothesis in the 
confidence interval (Tu, 7d) is due to the presence of a linear extrathermodynamic 
relation with the significance level determined by e. 

The above method is successfully used in [58]. Its comparison with Exner's method 
is exemplified in [59]. Other approaches have been developed to find the intersection 
point for a family of straight lines based on the least-squares method [60]. 

It must be emphasized, however, that inclusion of (~ in the temperature range 
chosen for the experiment is a necessary but not sufficient condition to ascribe only 
statistical meaning to | as instance of real intersection of the Arrhenius lines within 
this interval are known to reliably evidence IR validity [7, 16, 48]. A "real traversal 
through isoparametric points is a challenge to . . .  physico-chemical ideas on the 
nature of the processes under study" [16]. 

When the isokinetic temperature is passed, the significance of the ~d-/~ and ~S ~ 
contributions to AG~ changes. Consequently, one may speak about the enthalpy or 
entropy control of the reaction rate. Simple regression analysis is suggested [61] to 
elucidate the dominating contribution of either enthalpy or entropy factor. 
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Elimination of the effect of confidence domain extension on the kinetic param- 
eters is also the concern of refs [62, 63], suggesting the transformation of the linear 
model parameters, for instance (9), y = a + bx, with the aid of earlier obtained values 
of the parameters a 1 a n d b l : ~  1 = a  l + b l ( x - S  x) andT/1=a l  + b l ( X + S x ) , w h i c h  
reduce this model to give 

~-~ 
y = ~ + ~ (x - x +  Sx), 

with the confidence domain in the form of a circle 

n n 

x, 2 
x= i= l  ; s 2 _ , = 1  x2. 

n x n 

In [62] this version is considered from more general viewpoints. 
One more situation which hinders the statistical analysis of the relations under 

consideration is the displacement of estimates in model linearization analysed in 
[64-66] ,  or the equivalent transformations [67] and model inadequacy [68]. As 
I o g e ( k l l / T ) ~ = c ( I o g k l l / T )  (c being the operator of mathematical expectation), 
it is first necessary to decide which of the values, k or log k, satisfies the regression 
analysis prerequisites [69]. Consequently, either a nonlinear or a linear model may be 
adequate. These complications are often neglected for no reason at all. 

3. Physico-chemical aspect 

A profound CE analysis is necessitated concerning its relation to the fundamentals 
of the dynamics of chemical changes. In this respect, the contribution [70] is signifi- 
cant in pointing out physical and mathematical uncertainties in the deviation of the 
basic equation (in the theory of absolute reaction rates the Eyring equation), the 
limitedness of its version for nonideal systems (the Br~nsted-Bjerrum equation), 
and the unjustified equating of the transmission coefficient K to the unit discrepancy, 
inherent in a more general theory of monomolecular reactions RRKM [71]. In the 
theory of reaction rate constants in nonideal and condensed systems, the author 
of [70] uses a view that is more profound than that in the Eyring-Polanyi theory; 
this is the idea of the excited A molecule decay implying the difference between the 
active complex A ~ and its transient (activated) state A + [71]. The basic starting 
principles of the theory are the quantum-mechanical energy-time uncertainty ratio, 
the concept of local equilibration underlying nonequilibrium thermodynamics, and 
the Boltzmann principle, which is the relation for entropy and thermodynamic 
probability, well-known in statistical physics (this is insignificant in practice [72], 
cf. [73]). However, the Boltzmann formula valid for the system in both equilibrium 
and nonequilibrium states permits the expression, in particular, of the ratio of thermo- 
dynamic probabilities of the two states through AG nonequilibrium states (observing 
the conditions of local equilibrium) [70]. If the thermodynamic probabilities of these 
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states are proportional to the frequencies of their onset, this ratio may give an expres- 
sion for the frequency of onset of one of the states. In this expression, the frequency 
of onset of the other state is determined by the universal frequency scale found from 
the above uncertainty relation. The extension of this theory to the reaction involving 
the stages of A ~ and A + formation yields an equation for the ra~e constant which 
only formally differs from the Eyring equation by the constant factor in the trans- 
mission coefficient K = 4TreK'. Here, e is the base of natural logarithms; K is the 
transmission coefficient for the probability of onset in the active complex A ~ of the 
transient state A +, i.e. having a different meaning from that of the same coefficient 
in the Eyring equation; the value of K consistent with K' is very small [74]. The other 
terms of the equation which formally coincide with the terms of the Eyring equation 
also have essentially different meanings. The frequency factor is the maximum 
frequency at which a closed macrosystem or quasistationary microsystem can change 
its energy for kBT (k B being the Boltzmann constant); the term exp ( - A G ~ / R T )  
characterizes the relative probability of the active complex onset without the condi- 
tions of thermodynamic equilibrium of a conventional system. The active complex 
here is considered as a nucleus formed by reactant molecules in a solvate shell; it is 
thus included in the state A ~, and its formation may be expressed in terms of chemi- 
cal reactions proceeding at some degree of completeness ~. AG~ and K may change 
due to changing composition and properties of this shell. The conclusion is drawn that 
A ~ and A + can be studied experimentally. On the basis of the above concepts, the 
isokinetic effect theory has been developed, providing the method of K estimation 
and being of immediate interest. In short, i t involves the following [75]. For some 
reaction q under consideration with empirical (i.e. found on the assumption of K = 1) 
~d-/~ AG ~ and ~S~emn (~ /q  ~UL/q emp ), the A ~ formation process is q ' q emp. ,~, v. , �9 
r natural reactions (formation of an active complex nucleus, rearrangement of the 
medium around A ~, excitation of A ~ molecules). The change in the completeness 
degree ~ (a = 1,2 . . . . .  r) for these reactions or in their kinetically independent 
linear combinations ~'/3 provides an unstable state to cause chemical changes. The state 
of a nonequilibrium system is characterized by external (T, P) and internal (~e and ~'~) 
variables. If there are f such systems, and at definite T and P a reaction q of one and 
the same type proceeds in them through an active complex of volume v formed by 
a reaction ~'/~ different from q common to all f systems (the first sufficient CE con- 
dition), then the thermodynamic functions of a closed area v are equal for all f systems 
and only depend on ~'/3. The reaction completeness degree (3 during A ~ formation in 
the i-th system is denoted as ~'~/ and, in a general case, is different for different i 

( i =  1,2 . . . . .  f). The change in G ~ of reaction q in the i-th system is given as 

Gq~13i' AG~ = (19) 

where Gq is the change in G if any of f systems with ~'/~ changing by unity; A~'~/ is 

the change in ~'~ necessary for the i-th system to achieve an active state. Similar 
/3i 

expressions are also obtained for other thermodynamic functions. If, in this case, 
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! 

the values of Gq type are approximately equal for all the systems where reaction q 
proceeds (the 2nd CE condition), then, as the relation between real and empirical 
activation parameters are prescribed as 

~G~ = = AG~,ernp" + R T  In K (20) 

~ S ;  = z~S~,emp. - - R T I n K  (21) 

using the equation of type (19) for the / and j pair from f similar reactions of the 
series q, we arrive at 

A~-~ ~F/~ ~S ~ - R In qi qi, emp �9 Kqi t - ' l  

- (22)  
A~'~j ~d-/~ ~S ~ - R In qj q j, e mp. Kqj 

for i reactions of q type are similar (the 3rd CE condition) and equal to K, then If Kqi 
(22)  gives the CE 

~ - / ~  = g + | ~ qi  qi, em p. 

with the constants 

~O'/~/R In K 

(23) 

~d-/~.R In K ~d-/~ 
- 0 = g q i  (24)  

~S ~ - R In K ~S ~ ' R In K ~S ~ 
qi, emp �9 q i  q i  

-if= For a particular case (23) when ~UL/q[ = g, i.e. | = 0, the activation enthalpy is inde- 

pendent of the reaction completeness degree ~. The true value of K is determined by 
| and g from (24) (an appropriate statistically correct method should evidently be 
used for | and g estimation). The equality Eqi = E resulting in (23) is considered [70] 
as a quantitative formulation for the i-th system's belonging to one reaction series q 
within which the reaction mechanism (composition and structure of the active com- 
plex nucleus and its solvate shell) remains constant. The validity of (23) with the 
violation of this equality is the sign of an apparent CE stipulated by persistent changes 
in K.,Upon determination of K from (23) and (24) by formulas (20) and (21), real 
activation parameters may be estimated. Equation (23) includes ~S ~ but using 

qi, emp.'  
(21), the CE may be obtained from (24) for ~S#=qi (~Hqi~ = | as well, i.e. not 

only for empirical parameters found at K = 1, but also for real activation parameters 
within one series. In [75] the CE is compared for the latter with the thermodynamic 
relation ~ - / =  T O .  The main difference is that E) is not equal to the T of the system 
and may be less than zero (here, the term "isokinetic temperature" loses its meaning). 
At  T =  O ( |  we have ~d-/~ = T ~  '~, i.e. AG~/= 0 (AG ~ -- RE) In K). 

qi qi  - qi, emp. 
Thus, at the isokinetic temperature all reactions of one kind have equal rates with a 
reversible normal reaction of A ~ formation. The isokinetic temperature | has the 
meaning of the vibrational temperature of the complex A #= nucleus. In [70, 75] the 
CE means that local heating of the system (enthalpy growth) involves, as is always 
the case, local disordering (entropy growth), the latter being true of theA ~ ambient 
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medium rather than of the complex A ~ itself. Negative values of O are possible at 
~.~'~ < 0 (~d-/~. > 0), i.e. with system ordering in the course of formation of nucleus 

qi "~/ 
A ~  and its shell. At O = 0, the K values of uniform reactions are different. It is 
concluded by Shahparonov that profound study of the reaction mechanism (deter- 
mination of the thermodynamic functions A ~ and K) requires that isokinetic relations 
be sought. This problem cannot as yet be solved by other methods. The theory under 
consideration has already been used to interpret different cases of the IR effect 
[76-78] ,  including heterogeneous processes [79, 80]. In the latter, | is in correlation 
with the mmelt (or Tboil) of the absorbent. The development of the theory has shown 
[37] that, in a general case, the CE is nonlinear and the widespread Hammett and Taft 
equations may be deduced from the CE in such a manner that the incorporated 
empirical parameters obtain complete theoretical interpretation. The CE interpretation 
under consideration is at present one of the most general. However, it has not yet been 
applied directly to solid-phase reactions. Among other general approaches, the thermo- 
dynamic ones considered below are of greatest interest. 

It is shown by a number of examples [81] that the entropy change is mainly deter- 
mined by the number of chemical bonds formed or broken during reaction 
(cf. Kobosev rule [82]). Therefore, for processes with a changing number of uniform 
or, more so, similar bonds, there exists a linear dependence between ~ and ~d-/. 
The angular coefficient in this dependence increases with growing strength of the 
bond. Similar relationships have been established in the kinetics of heterogeneous 
catalytic reactions for ammonia oxidation, and the soft and deep oxidation of 
propylene, the corresponding angular coefficient being in correlation with the experi- 
mental values of binding energy for the surface oxygen of oxide catalysts. The 
chemical bond is loosened, rather than broken in some governing process, and the 
electronic cloud of the reactant is deformed by the catalyst [83]. Following [81], a 
similar relationship is preserved between the loosening energy and entropy. 

The thermodynamic CE interpretation by Rudakov [84] has remained poorly 
known. He distinguishes between false (incorrect account of the process mechanism, 
effect of foreign factors), trivial (of Tz~S = ~ type for phase transitions) and true 
CEs. The latter without being confined to similar molecules, occur only in condensed 
systems. Following Rudakov, therefore, the general reason for CEs is to be found in 
the specificities of collective molecular interactions. In this connection, CEs must 
show up in the state functions of individual substances and, specifically, when full 
thermodynamic functions F, U, S are replaced by the interaction functions 

/ ~ = F * - F ;  L / = U * - U ;  S = S * - - S  (25) 

(* stands for the conventional state, namely a quantum ideal gas at T, V and the com- 
position of the real system obeying the same statistics), where F is the Helmholtz 
energy; and U is the internal energy. The function # is equal to the interaction break 
in the system, i.e. to its transition to the state * at T, V = const.;/J is the total measure 
of energy consumption upon interaction break (internal interaction energy); S is the 
measure of system ordering upon the interaction break. To understand the meaning of 
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/E, /~ and S, it is important to note that their signs are contrary to those of F, U and S. 
Therefore, as the system ordering increases, so does S, which is always ~> 0, and the 
positive value of U corresponds to the negative potential energy of the system. In fact, 
the use of F, U and S resulted in the CE appearing in unique relations for gaseous, 
liquid and crystal solids. The general CE equation has the form 

b L) (26) g=g0+ 2- 

S0 and b for the above three aggregate states being 0 and 0.5; 2 and 0.4; and 10 and 
0.02, respectively. This emphasizes the generality of all the CEs obtained. To be 
specific, the CE line for crystals (per lattice node) includes diverse substances such as 
metals, halides, oxides, nitrides and carbides. The relation is shown for S0, i.e. model 
entropy, for which L) = 0, and 'collective entropy' R (universal gas constant): for gases 
--~o = 0 �9 R, for liquids S0 = R, and for solids S O ~ 5R. The quantity b is interpreted 
as the system compliance to the change in the energy of interaction between structural 
elements. There is a correlation between S0 and b for the three aggregate states. When 
the interaction functions are used, the compensation parameters S0 and b become 
the characteristics of the structure of the given aggregate state. They show, for 
example, that the liquid state of a substance is closer to a gaseous than to a crystal 
state. Following [84], the sense of the thermodynamic CE with collective interactions 
implies variations of the system ordering as the interaction energy of the particles 
constituting the system changes. Because of the comprehensive character of the 
particle-to-particle interactions, the CE of this nature extends to kinetic, viscous, 
sorption and other processes. Hydrophobic interactions, with changes in the entropy 
and energy of solvation due to long-range parameters rather than direct interaction 
between a particle and solvate shell, are the only ones where the CE shows itself 
within the homologous series alone when the change in the chain by -CH 2 -  leads to 
equal increments in U and S. The author also shows that, in the general case, the CE 
is nonlinear. The nonlinear CE in terms of interaction functions, as well as its applica- 
tions, are considered in [85]. 

Although the reason for the CE as a connection between the ordering and inter- 
action energy had been found earlier [86-90],  Rudakov was the first to show this 
connection quantitatively and in the most general form, thereby adding a clear 

"physical meaning to this relationship. 
CE analysis on the basis of statistical thermodynamics [91] shows that there is no 

linear dependence between AG and ~d-/. The CE ~ S = A I ~ d - / +  B 1 may be repre- 
sented as 

, In (-~) 0 In (-~) 

, , . n ~ + , , [ ,  , ,  1 ; ~ 1 { , , 0 + , , [ , ~ T ] } + , 1  

where Q is the statistical sum; E o is the lowest level energy; N is the Avogadro number; 
and V is the volume. To make it linear it is necessary, for example, that  
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R T - -  
aT 

be an integral multiple of R/2 and that there exist a linear relationship between AE 0 
and A In (Q/NV). The former is possible with the dissolution of gases in a liquid in 
the case of complete excitation of harmonic oscillator vibrations in a free-volume well 
in a liquid phase and of translational and rotational movements in a gas phase. The 
latter occurs if some interaction alters E o and, at the same time, the intervals between 
the vibration levels, thereby changing Q. Upon gas dissolution, E 0 decreases while 
the intervals between the levels expand, i.e. Q decreases. 

A rather general explanation of the CE for various processes has recently been 
suggested in [92], through the analysis of changes in the potential energy surface 
and the energy levels of a transient state. These changes are interdependent. Further, 
shifting of the energy levels involves a variation of the activation entropy, while 
changes in the potential energy saddle alter the activation energy. Therefore, for 
example, a reduction of E during adsorption causes entropy losses compensating 
for this reduction. =l'he explanation is discussed in [93], while an interpretation is 
given in [94]. CE is considered on the basis of statistical thermodynamics in [95]. 

Conclusion 

Some progress has been made in different fields of physical chemistry in inter- 
preting the isoparametric relation from general standpoints. As a result, this 
mysterious regularity has been clearly interpreted physically, primarily from the 
position of thermodynamics, including irreversible thermodynamics. IR permits the 
determination of a number of quantities which could otherwise hardly be determined, 
if at all (true activation parameters, transmission factor [70, 96], number of degrees 
of freedom of activation [97]) and the interpretation of many empirical parameters 
[37]. Important statistical aspects of the CE relations are elucidated, and correct 
statistical methods for their detection and distinction from the artefacts widespread 
in this field are developed. The inherent connection between such relations and 
formalized descriptions of multiparametric dependences is shown. However, as Part II 
of our survey will show, these advances are not used practically when analysing 
compensation relationships for solid-phase reactions. We think that progress can be 
made in this field by using the advances of other areas of physical chemistry, although 
this may seem diff icult owing to the specific nature of solid-phase reactions. Some 
endeavours of this kind will be presented in Part I1. 
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List of  signs 

Symbols 

A 
B; e 
E 
f(e) 
g 
~d-I§ 

t 

$) 

preexponent factor in Arrhenius equation 
parameters in compensation relation 
activation energy 
kinetic function 
parameter in isokinetic relation 
enthalpy of activation 
entropy of activation 
time 
degree of substance transformation 
isokinetic temperature 

1, Formal aspect 

a ,b  

ai; a]; aij; aij I 
f; f (x 1, x2 . . . .  

�9 . .  , x i  . . . . .  Xn) 
f 0 ; fO ,  f l x  0 yO 

w '  ' 1 ' ~ 2 ' " "  
. . . .  x O  . . . . .  xOl 

/kG 
AGO 

E; el', eli 
k 
R 
T 

x,,, xj: Xl I xw 
X i ; X j ; X l  
x,O 
Q; R;X;Z; 
I; q; r; x; y; z 

P 

~1; ~m; ~w 

parameters in linear energies relation 
scale factors 

response function in polylinear relation 

standard values of function 
free Gibbs energy 
standard value of free energy in definite condition 
energy at definite factor or combination of factors 
constant of action 
universal gas constant 
temperature 
arguments of polylinear relation 
variables depending on the arguments xi;  xj;  x I 
standard value of argument 

interdependent values in series of isoparametric relations 
constant characterizing kind of interaction in polylinear rela- 
tion 
Hammett constant 
scale factors 

2. Statistical aspect. 

a ,b  
f 

No 

axis of ellipsis 
number of degrees of freedom 
free Gibbs energy of activation 
null-hypothesis 
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ke 
I 
m 
r 
S 

So 

so 
SOO 
soo 
Su 

Su 
S= 

P; Q; U; X; Z; 

Pi; uj; u 0 

s 

~,~ 

P 

X 2 

a; Sj 2 , SGG, SGH, SHH; 

Ink 

(T)  

constant of action determined at point e 
n'umber of Arrhenius line 
number line points 
correlation estimator 
standard deviation 
residual sum of squares in assumption that all lines intersect 
at one point 
error corresponding to S O 
residual sum of squares for normal regression lines 
error corresponding to SO0 
residual sum of squares characterizing confidence interval of 
intersection point 
standard deviation corresponding to S u 
asymptote of S u 
mean harmonic temperature 

auxiliary values in statistical analysis by method [7] 
value characterizing level of meaningfulness 
operator of mathematical expectation 
parameters of transformed pattern [62, 63] 
correlation coefficient 
angle of slope of lines log k 1 on log k 2 
statistical criterion 

auxiliary values in statistical analysis by method [53] 
upper and lower boundary estimates of different values, for 
example a 
mean values in statistical analysis by method [45-47 ]  and 
[7], for example In k 
mean values in statistical analysis by method [53], for exam- 
ple T 
estimated values, for example In k 

3. Physico-chemical aspect 

A ,B  

A + 
A ~  
Eo 
F 
F * ; U * ; S *  

parameters of compensation relation in statistical thermo- 
dynamic 
symbol of activated state 
symbol of active complex 
lowest level energy 
Helmholtz energy 
thermodynamic functions for quantum ideal gas 
thermodynamic function of interaction 
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Gq 
N 
O 
q 

gO; b 
U 
V 
v 

t~ 

t g ; g  
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number of nonequilibrium system 
change in G if any of f systems with ~'# changing by unity 
Avogadro number 
statistical sum 
symbol of reaction type 
number of natural reactions at formation of A 
parameters in compensation relation (26) 
internal energy 

volume 

volume of active complex 

completeness degree of l inear combinat ion of  natural reac- 

tions/~ 

completeness degree of react~0n q a t A  ~ fo rmat ion  

transmission coeff icients 

completeness degree of natural reactions 
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Zusammenfassung -- Der sich auf isoparametrische Korrelationen beziehende Kompensations- 
effekt wird im Rahmen der formalen Theorie analysiert. Statistische und physikalisch-chemische 
Aspekte dieser Korrelationen werden erSrtert. 
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Pe310Me -- C no3Hu, H~ ~:X)pManbHO~ TeOpHH paCCMOTpeH KOMrleHCalJ, HOHHbI~I 3d~l~eKT, OT o 

HOCRLU, HHCR K pa3HOBH,0,HOCTH H3onapaMeTpHqeCKHX 3aBHCHMOCTe~. PaCCMOTpeHbl TaK)Ke CTa- 

THCTHqeCKH~ 14 (:~)I43HKO-XHMHqeCKHH acneKTbl TaKHX 3aBHCHMOCTekl. 
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